Static maps

Andrew Ba Tran

Contents
Shape files L e 2
The plan L e 2
Downloading Census data into R via APT o 7

This is from the fifth chapter of learn.r-journalism.com.

In this section we’re going to go over the basics of spatial data, shapefiles, and various ways to map Census
data.

Spatial data can be difficult to wrap your head around at first.

T’ll describe it briefly as best I can before we move on to how journalists use it in their work process. But I
hope you’ll look up more details later on as you come to appreciate it more.

There are two underlying important pieces of information for spatial data:

e Coordinates of the object
e How the coordinates relate to a physical location on Earth
— Also known as coordinate reference system or CRS

There are two types of CRS:

o Geographic
— Uses three-dimensional model of the earth to define specific locations on the surface of the grid
— longitude (East/West) and latitude (North/South)

e Projected
— A translation of the three-dimensional grid onto a two-dimensional plane

There are so many map projections to choose from. The one you’ve probably been exposed to the most is
Mercator (also known as WGS84) on Google Maps.

If you’ve worked with projections, then you’ve probably already seen this famous West Wing clip.

Raster versus Vector data

Spatial data with a defined CRS can either be vector or rster data.

e Vector
— Based on points that can be connected to form lines and polygons
— Located with in a coordinate reference system
— Example: Road map
o Raster
— Are values within a grid system
— Example: Satellite imagery

{{% notice note %}} This class will focus on vector data and the sf package. An older package, sp, lets a user
handle both vector and raster data. It also takes much more effort to get your system ready for it (shakes fist
at gdal). The main differences between the sp and sf packages are how they store CRS information. While
sp uses spatial subclasses, sf stores data in dataframes, allowing it to interact with dplyr methods we’ve
learned so far. I encourage you to check out other spatial data analysis and modeling classes if you remain
interested in this afterward. {{% /notice %}}

https://learn.r-journalism.com/en/mapping/static_maps/static-maps/
https://learn.r-journalism.com/
https://xkcd.com/977/
https://www.youtube.com/watch?v=eLqC3FNNOaI
http://www.rspatial.org/

Shape files

R can handle importing different kinds of file formats for spatial data, including KML and geojson. We’ll
focus on shape files, which was created by ESRI in the ’'90s.

Though we refer to a shape file in the singular, it’s actually a collection of at least three basic files:

e .shp - lists shape and vertices
e .shx - has index with offsets
o .dbf - relationship file between geometry and attributes (data)

All files must be present in the directory and named the same (except for the file extension) to import
correctly.

The plan

We’ll walk through several methods for dealing with spatial data, each time improving on the style a little bit.

Map blank shapefile after downloading

Join Census data to blank shapefile and map

Use R package Tigris to download shape file

Use R package censusapi to download census data and join to new shape file
Use tidycensus to download Census data and the shape file all at once

CU WD

Let’s use the sf package in conjunction with ggplot2 to visualize the data.

{{% notice important %}} There are performance issues when creating maps with the sf package if you’re
using a Mac. To fix, download and intall XQuartz. Restart and then run these commands: options(device
= “X11”) and then X11.options(type = “cairo”) {{% /notice %}}

Mapping a simple shape file

We'll start by reading in a shapefile of state boundaries from the Census.

If you haven't installed ggplot2 or sf yet, uncomment and Tun the lines below
#install.packages("ggplot2")
#install.packages("sf")

library(ggplot2)
library(sf)

If you're using a Mac, uncomment and run the lines below
#options (device = "X11")
#X11.options (type = "cairo")

fifty_location <- "data/cb_2017_us_state_20m/cb_2017_us_state_20m.shp"
fifty_states <- st_read(fifty_location)

Reading layer “cb_2017_us_state_20m' from data source ~/Users/andrewtran/Projects/r-journalism/learn
Simple feature collection with 52 features and 9 fields
geometry type: MULTIPOLYGON

dimension: XY

bbox: xmin: -179.1743 ymin: 17.91377 xmax: 179.7739 ymax: 71.35256
epsg (SRID): 4269

proj4string: +proj=longlat +datum=NAD83 +no_defs

https://www.xquartz.org/
https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html

¢ A 57 Filter

b

STATEFP STATENS AFFGEOID GEOID STUSPS NAME LSAD ALAND AWATER g
1 02 01785533 0400000US02 02 AK Alaska 00 1.478588e+12 277723861311
2 06 01779778 0400000US06 06 CA California 00 4.034832e+11 20484637928
3 08 01779779 0400000US08 08 Cco Colorado 00 2.684260e+11 1178495763
4 11 01702382 0400000US11 11 DC District of Columbia 00 1.583516e+08 18675956
5 16 01779783 0400000US16 16 ID Idaho 00 2.140482e+11 2393355752
6 17 01779784 0400000US17 17 IL lllinois 00 1.437841e+11 6211277447
7 19 01779785 0400000US19 19 IA lowa 00 1.446642e+11 1081293682
8 21 01779786 0400000US21 21 KY Kentucky 00 1.022661e+11 2388731561
9 22 01629543 0400000US22 22 LA Louisiana 00 1.119048e+11 23746413153
10 24 01714934 0400000US24 24 MD Maryland 00 2.515070e+10 6980371026
11 27 00662849 0400000US27 27 MN Minnesota 00 2.062292e+11 18944967530
12 29 01779791 0400000US29 29 MO Missouri 00 1.780520e+11 2488190402
Figure 1:

View(fifty_states)

We pointed to the shapefile and used the st_read() function to import it.
ggplot(fifty_states) + geom_sf ()

70°N -
60°N -
50°N -
40°N -
30°N -

20°N -

120w 60°W 0 60°E 120°E
Well, that’s interesting. We have the boundaries of each state, including Hawaii and Alaska.
And ggplot2 is doing its best to fit everything on one image. Which is taxing on the system.
Also, there are no colors because we don’t have any data to fill with.

Let’s pull in population data from CensusReporter.org

If you don't have readr installed yet, uncomment and run the line below
#install.packages ("readr")

library(readr)
populations <- read_csv("data/acs2016_1yr_B02001_04000US55.csv")

View(populations)

#+4+4. Join data to blank shapefile and map

We have a shapefile and a data set of populations. They're both data frames so should be easy to join. State
names are where the data sets can join on. The column names for each data frame is different for state
names, but we can account for that easily.

https://censusreporter.org/data/table/?table=B02001&geo_ids=040%7C01000US

B02001001,

B02001002,

geoid name 802001001 Error 802001002 Error
1 01000US United States 323127515 0 234644039 111971
2 04000USO1 Alabama 4863300 0 3316384 6545
3 04000US02 Alaska 741894 0 477895 3267
4 04000US04 Arizona 6931071 0 5254944 21891
5 04000USO5 ' Arkansas 2988248 0 2290066 5262
6 04000US06 California 39250017 0 23420234 62421
7 04000US08 Colorado 5540545 0 4654921 13381
8 04000US09 Connecticut 3576452 0 2741892 12294
9 04000US10 Delaware 952065 0 659091 5072
10 04000US11 District of Columbia 681170 0 277268 3530
11 04000US12 Florida 20612439 0 15574165 29122
12 04000US13 Georgia 10310371 0 6054861 18041
Figure 2:

ncol(fifty_states)

[1]1 10

library(dplyr)

fifty_states <- left_join(fifty_states, populations,

by=c("NAME"="name"))

ncol(fifty_states)

[1] 31

Excellent. We went from 10 variables in fifty_ states to 31.

There are a lot of variable names in this data frame. Check them out.

colnames(fifty_states)

[1] "STATEFP" "STATENS" "AFFGEOID"

[4] "GEOID" "STUSPS" "NAME"

[7] "LSAD" "ALAND" "AWATER"

[10] "geoid" "B02001001" "B02001001, Error"

[13] "B02001002" "B02001002, Error" "B02001003"

[16] "B02001003, Error" "B02001004" "B02001004, Error"

[19] "B02001005" "B02001005, Error" "B02001006"

[22] "B02001006, Error" "B02001007" "B02001007, Error"

[25] "B02001008" "B02001008, Error" "B02001009"

[28] "B02001009, Error" "B02001010" "B02001010, Error"

[31] "geometry"

Alright, this is good to go over now.
e STATEFP is the state fips code.

states, counties, census tracts, etc.
e« GEOID is also part of the fips code.

— In this instance it’s only two digits wide.

B02001003

40893369
1301102
23753
299674
464516
2265280
234142
378932
209911
320554
3310428
3254495

B02001003,
Error

64
7
1
6

14

%]

NN

22
14

— That stands for the Federal Information Processing Standard. It’s a standardized way to identify

— The more specific you get into the Census boundaries, the longer the number gets.
« B02001001, B02001002, etc.
— This is reference to a Census table of information.
— For example, B02001001 is total population for that polygon of data in that row
— When you export data from the Census, the variables get translated to this sort of format
— You'll have to remember when you download it or look it up.
« B02001001, Error
— Margin of error included because these are just estimates, after all
e geometry
— This is the CRS data

Let’s map it with geom_sf () and fill it with the population variable B02001001. And we’ll filter out Hawaii
and Alaska for now because it’ll slow things down if we don’t. Sorry! We’ll bring them back in later, I
promise.

forty_eight <- fifty_states %>/
filter (NAME!="Hawaii" & NAME!="Alaska" & NAME!="Puerto Rico")

ggplot (forty_eight) +
geom_sf (aes(£i11=B02001001)) +
scale_fill_distiller(direction=1, name="Population") +
labs(title="Population of 48 states", caption="Source: US Census")

Population of 48 states

50°N -
rd
2

45°N -
& Population

40°N -
3e+07
2e+07

35°N -
1le+07

30°N -

25°N -

120°W 110°W 100°W 90°W 80°W 70°W

Source: US Census

Not bad. Very basic. Notice that the x and y axis are latitude and longitude.
So we’ve gone over how to bring in shape files and data locally, join them, and how to map it.

There’s a more efficient way of dealing with shape files if you know what you’re looking for.

Downloading shape files directly into R

Let’s use the tigris package, which lets us download Census shapefiles directly into R without having to
unzip and point to directories, etc. Here’s a pretty thorough introduction from the package creator, Kyle

https://www.socialexplorer.com/data/ACS2016_5yr/metadata/?ds=ACS16_5yr&var=B02001001
https://www.census.gov/programs-surveys/acs/guidance/which-data-tool/table-ids-explained.html
https://github.com/walkerke/tigris
https://www.census.gov/geo/maps-data/data/tiger-line.html
https://walkerke.github.io/tigris-webinar/

Walker.

Shapefiles can be downloaded simply by referring to them as a function such as

e tracts()

e counties()

e school_districts()
e roads()

First, let’s make sure the shapefiles download as sf files (because it can also handle sp versions, as well)

If you don't have tigris installed yet, uncomment the line below and Tun
#install.packages("tigris")

library(tigris)

set sf option

options(tigris_class = "sf")

tx <- counties("TX", cb=T)

#If cb is set to TRUE, dounload a generalized (1:500k) counties file. Defaults to FALSE (the most deta?
Excluding Non-Continguous states (sorry!)

ggplot (tx) +

geom_sf() +
theme_void() +
theme (panel.grid.major = element_line(colour = 'transparent')) +

labs(title="Texas counties")

Texas counties

Great. Notice how we used a couple of new lines to eliminate the axes and the grids and backgrounds?

Looking like a real map. We just need to add some data.

Downloading Census data into R via API

Instead of downloading data from the horrible-to-navigate Census FactFinder or pleasant-to-navigate Census-
Reporter.org we can pull the code with the censusapi package from Hannah Recht, of Bloomberg.

First, sign up for a census key.

Add key to .Renviron

Sys.setenv(CENSUS_KEY="YOURKEYHERE")

Reload .Renviron

readRenviron("~/.Renviron")

Check to see that the expected key is output im your R comnsole
Sys.getenv ("CENSUS_KEY")

If you don't have censusapi installed yet, uncomment the line below and Tun
#install.packages ("censusapi")

library(censusapi)

Check out the dozens of data sets you have access to now.

apis <- listCensusApis()
View(apis)

We won’t get too deep into the usage of censusapi, though I recommend the excellent documentation later.

https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
https://censusreporter.org/
https://censusreporter.org/
https://hrecht.github.io/censusapi/articles/getting-started.html
https://api.census.gov/data/key_signup.html
https://hrecht.github.io/censusapi/articles/getting-started.html

e
i Decennal Census of Pepulation and
Vistige 201 3 Pofrlitioh EsUmates: US, St
res: US, St

Vistage 201 3 Population Est

Vistage 201 3 Population Estimares: Fusro Rioo Murd

Vistage 201 § Population Estimates: Courty Total Pop

2011 Amarican Community Survry - Data Profies: 1-,
2013 Amasiean Community Survry - Summariced Dat

2011:201 3 Ameritan Community Sorvey - Summarize

Vistage 201 3 Population Estimates: Subcousty Popula
20012013 Americ niiny Swevey - Duta Profile

2012 Pultlic Elememary-Secondary Edutation Finance

2001 Amarican Communing Survey 1-Year Profites for

Vistage 301 § Populstion Estimates: County Populatio

Vistage 201 § Fopulstion Extimates: County Populstio
Vistage 201 § Fopulstion Estimates: Kational Monthly
Vistage 201 3 Populition Estimates: Kalionsl Mosthly

Vistage 201 3 Population Estimates: Puerts Rico Com

vienage 201 3 Population Estimanes: Pussio Rion Mus

etage 201 3 Population Estimares: State Fopulation

Viszage 201 3 Population Estimates: Staie Fopulation

Vimtage 201 & Populstion [xtimates: U%, Stase, snd PR

Vimtage 201 & Populstion Intimates: US, and PR
Virtage 201 & Populstion Eatimates: County Total Fop
Vistage 201 & Population Estimates: Puerto Rico Mur

Time Sertes Longnudnal Evgliyes-Househild Dysam
Time Series Longinusasl Empioyer-Househsld Dymam
Time Series. Longiudinal Emgioyer-Haousehold Dymam
Virtage 101 & Population Estimates: Subcounsy Popula

Vistage 301 4 Populstion Istimates; County Populstio

Vistage 201 8 Pepulstion ntimates: Courty Populstio

Vistage 201 & Pepulstion Extimares: Katisnal Mesthly

Vistsge 201 & Pepulation Estimares: Kational Masthly

Vistage 201 4 Population Estimates: Puerie Rico Com

pep/prm
pen/ery

acal forafie

se3d

en/subaty
acs3fectie
pulaihifin

acyl 13
Den/enchars
pep/enchart
ep/montthmatchard

penfmentthmatchct

penfrochars
prpfeochark
pep mesthiymstehard

pep/mesthimatchart

pen/proageses

013/ /LR
013/ pep/nantprel
013/ pepsprm

01 3/pepsery

27201 3/acal forofile

LIET

01378043

01 2/ prtachitin
0113l fed 113
013/ pep/cochars
01 3/pep/cochart
01 3/ jpep/menthimatch
et i/ data /201 3/ p/mentbbmatch

et iR 201 3 e prcagesex

014/ pepSsubary

014/ pep/cochars

014 pep e chart

B meEsbmach

Aot Qo dana 201 4/ pe p/preageses

Figure 3:

We’ll focus on using the getCensus() function form the package.

frame of results.

These are the arguments you’ll need to pass it:

isTimeserkes temporal

Ty} 390

) - Cleriad
) - Ciarres
Curnens

G - Curnens

Cusrre
Current
0 - Curnit
10+ Curnest

) - Clrreen

Curnane

Aprl 1, 2010 - Current
Aprl 1, 2015 - Currone

Time Serkes

Tome Series

01G- ¢

L3N0 - Currnnt
L 30N - Curnnet
L TN - Curnest

Apeil 1, 2010 - Current

esription
The cendus of popula
A

Estimanes of the Total Resident Pogalation and Redide

o wrd housiog

Pogeakinios EStimates, Esimated Compsnests

Anreal Resigent Population Esimases for Puerto Rio
Anral Resident Population [smases, Evtimated Gom

Tha American Came

Suboousty Kesident Poculation Estimates: Ageil 1, 20

Armerican Commsun ity Survey UALS) I3 a ranionwid

survey cowers ol public schaool systems thar provi

Population [itimate for 6 Ra

Anrve] County e

inahiy Population Extimates by Unberrse, Age, Sex,

Manthly Magralition Estimates by Unbeirss, Age, Sex,

Anras] Poglas timates, [stimated Componanty
Anmasl Resident Population Eibmates, Evtimated Com
Anmal kesident Population Eitmates for Puerio Rico
e

Charte ity Woskd hoe bad

iy Wkl b W0 are & st ol

T are & st of
Tre Cuarterdy Workdorce Indicasors. (W are 3 vet of

Subcownty Eesident Pogulason Exs

Anrval Cownty Be Population Eu

[——T

Al Gty e

ekl Papulstion Evtimates by Unborse, Age, Sex,

by b - Evtimates

Anreal Estimates of the Residen Population by Single.

014-03-14
2014-03-78
2014-04-01
1014-08-11
3014-08-14

I014-08:14

20150312

20150312
20150416
0150416
01504416
2015-05-11

15-06-0%
I015-06-09
IO1L-06-00
IO15-06-00
2015 -06-09

It makes an API call and returns a data

o name - the name of the Census data set, like “acsb” or “timeseries/bds/firms”
e vintage - the year of the data set
o vars - one or more variables to access (remember B02001001 from above?)
e region - the geography level of data, like county or tracts or state

Real quick, let’s use listCensusMetadata() to see what tables might be available from the ACS Census

survey.

acs_vars <- listCensusMetadata(name="acs/acs5", type="variables", vintage=2016)

View(acs_vars)

It takes a couples to download the list of this data set (23,000 rows!) but once you get it, you can explore it
to see what sort of data you might like to download. You can also refer to the Census for some guidance.

We'll pull median income: B21004_001FE

tx_income <- getCensus(name = "acs/acsb", vintage =
c("NAME", "B19013_OO1E",
"county:*", regionin =

vars =
region =
head(tx_income)

state county
48 001
48 003
48 005
48 007
48 009

O W N

Anderson County,
County,
Angelina County,
County,
County,

Andrews

Aransas
Archer

"B19013_001M"),
"state:48")

2016,

NAME B19013_0O1E B19013_001M

Texas 42146
Texas 70121
Texas 44185
Texas 44851
Texas 62407

2539
7053
2107
4261
5368

https://www.census.gov/programs-surveys/acs/guidance/which-data-tool/table-ids-explained.html

| & 5 Filter race

name label concept pr¢
22018 B11001F_OO1E Estimate!!Total HOUSEHOLD TYPE (INCLUDING LIVING ALONE) (SOME ...
22023 B11001F_002E Estimate!!Total!!Family households HOUSEHOLD TYPE (INCLUDING LIVING ALONE) (SOME ...
21814 B02001_008E Estimate!!Total!!Two or more races RACE
21815 B02001_007E Estimate!!Total!!Some other race alone RACE
21821 B02001_009E Estimate!!Total!!Two or more races!!Two races includi... RACE
21908 B02001_010E Estimate!!Total!!Two or more races!'Two races excludi... RACE
22049 B02001_002E Estimate!!Total!!White alone RACE
22059 B02001_001E Estimate!!Total RACE

22065 B02001_004E Estimate!!Total!!American Indian and Alaska Native al... = RACE
22069 B02001_003E Estimate!!Total!!Black or African American alone RACE
22076 B02001_006E Estimate!!Total!!Native Hawaiian and Other Pacific Isla... = RACE
22081 B02001_005E Estimate!!Total!!Asian alone RACE
21804 B22005H_003E Estimate!!Total!!Household did not receive Food Stam... RECEIPT OF FOOD STAMPS/SNAP IN THE PAST 12 MO...

Figure 4:
6 48 011 Armstrong County, Texas 65000 9415

Alright, time to join it to our tx spatial data frame and map it.

Can't join by NAME because tx_income data frame has "County, Texas" at the end
We could gsub out the string but we'll join on where there's already a consistent variable, even thou

txdever <- left_join(tx, tx_income, by=c("COUNTYFP"="county"))

ggplot (txdever) +
geom_sf (aes(£fi11=B19013_001E), color="white") +
theme_void() +
theme (panel.grid.major = element_line(colour = 'transparent')) +
scale_fill_distiller(palette="Oranges", direction=1, name="Median income") +
labs(title="2016 Median income in Texas counties", caption="Source: US Census/ACS5 2016")

2016 Median income in Texas counties

[T .
- Median income
[| |
||
L] 80000
. 60000
40000

>

L3
»
e

Source: US Census/ACS5 2016

Download Census data and shapefiles together

The most recent package dealing with Census data is tidycensus and it brings together what we’ve done
above— the data and the geography. It’s also created by Kyle Walker.

You can use it to pull data only like with censusapi or you can use it to pull shape files only, like with tigris.

But with tidycensus, you can download the shapefiles with the data you want already attached. No joins
necessary.

I won’t get into the particulars of looking up geography types and Census variables.

Let’s get right into mapping. We’ll calculate unemployment percents by Census tract in Jersey City. It’1l
involve wrangling some data. But querying the data with get_acs() will be easy and so will getting the
shape file by simply passing it geometry=T.

if you don't have tidycensus installed yet, uncomment and run the line below

#install.packages ("tidycensus")
library(tidycensus)

Pass 1t the census key you set up before

census_api_key("YOUR API KEY GOES HERE")

To install your API key for use in future sessions, run this function with “install = TRUE".

jobs <- c(labor_force = "B23025_005E",
unemployed = "B23025_002E")

10

https://walkerke.github.io/tidycensus/index.html

jersey <- get_acs(geography="tract", year=2016, variables= jobs, county = "Hudson", state="NJ", geometr
head(jersey)

Time for some math. Can you follow what’s happening in the code based on what you’ve learned in previous
chapters?

We can string the dplyr wrangling and ggplot2 code together. Just watch and look out for the transition
from %>% to +.

library(tidyr)

jersey %>
mutate(variable=case_when (
variable=="B23025_005" ~ "Unemployed",
variable=="B23025_002" ~ "Workforce")) %>%
select (-moe) %>
spread(variable, estimate) %>%
mutate (percent_unemployed=round(Unemployed/Workforce*100,2)) %>%
ggplot(aes(fill=percent_unemployed)) +
geom_sf (color="white") +
theme_void() +
theme (panel.grid.major = element_line(colour = 'transparent')) +
scale_fill_distiller(palette="Reds", direction=1, name="Estimate") +
labs(title="Percent unemployed in Jersey City", caption="Source: US Census/ACS5 2016") +
NULL

Percent unemployed in Jersey City

Estimate
20

15

10

Source: US Census/ACS5 2016

11

Faceting maps

One more example.

We’ll pull the population of non-Hispanic whites, non-Hispanic blacks, non-Hispanic Asians, and Hispanics
by Census tract for the 2010 Census. The function is get_decennial () and we’ll also add the summary_var
argument to get multi-group denominators.

racevars <- c(White = "P0050003",
Black = "P0050004",
Asian = "P0050006",
Hispanic = "P0040003")

harris <- get_decennial(geography = "tract", variables = racevars,
state = "TX", county = "Harris County", geometry = TRUE,
summary_var = "P0010001")

head (harris)

This is a very tidy data frame.

And looks like we’ve have some grouping material.

If you dont have the viridis package installed yet, uncomment and run the line below
#install.packages("viridis")

library(viridis)

harris %>%
mutate(pct = 100 * (value / summary_value)) %>
ggplot(aes(fill = pct, color = pct)) +
facet_wrap(~variable) +
geom_sf() +
coord_sf(crs = 26915) +
scale_fill_viridis(direction=-1) +
scale_color_viridis(direction=-1) +
theme_void() +
theme (panel.grid.major = element_line(colour = 'transparent')) +
labs(title="Racial geography of Harris County, Texas", caption="Source: US Census 2010")

12

Racial geography of Harris County, Texas
Asian Black

¥
s,
%

Hispanic White

Source: US Census 2010
Well, we’ve gone over a lot of mapping techniques that do pretty much the same thing.
But now you’ve got a grasp of all the options.

Pick which one works best for your case.

About Alaska and Hawaii

Oh yeah.

If you pass shift_geo=T to the get_acs() function in tidycensus then the states will be repositioned.

county_pov <- get_acs(geography = "county",
variables = "B17001_002",
summary_var = "B17001_001",
geometry = TRUE,
shift_geo = TRUE) %>%
mutate(pctpov = 100 * (estimate/summary_est))

ggplot (county_pov) +

geom_sf (aes(fill = pctpov), color=NA) +

coord_sf (datum=NA) +

labs(title = "Percent of population in poverty by county",
subtitle = "Alaska and Hawaii are shifted and not to scale",
caption = "Source: ACS 5-year, 2016",
£ill = "9, in poverty") +

scale_fill_viridis(direction=-1)

13

Percent of population in poverty by county
Alaska and Hawaii are shifted and not to scale

% in poverty
50
40
30
20
10

Source: ACS 5-year, 2016

So, why not use tidycensus every time instead of tigris?

Well, you don’t need a Census key api to use tigris.

14

	Shape files
	The plan
	Downloading Census data into R via API

