Customizing charts
Andrew Ba Tran

Contents

Reordering chart labels ... 2
Lollipop plot .. 4
Saving ggplots .. 9
Scales .. 12
Scales for color and fill ... 14
Annotations .. 16
Themes .. 17
Your turn ... 19

This is from the fourth chapter of learn.r-journalism.com.

Let’s bring that data back in again.

```r
library(readr)

ages <- read_csv("data/ages.csv")

Remember that Dot Plot we made before?

library(ggplot2)

ggplot(ages,
      aes(x=actress_age, y=Movie)) +
geom_point()
```
It’s not that great, right? It’s in reverse alphabetical order.

Let’s reorder it based on age.

Reordering chart labels

This means we need to transform the data.

The easiest way to do this is with the package `forcats`, which (surprise!) is also part of the tidyverse universe.

The function is `fct_reorder()` and it works like this
If you don't have forcats installed yet, uncomment the line below and run
install.packages("forcats")

library(forcats)
ggplot(ages,
 aes(x=actress_age, y=fct_reorder(Movie, actress_age, desc=TRUE))) +
geom_point()
Not a bad looking chart. We can tweak it a little more and turn it into

Lollipop plot

This time we’re going to use a new `geom_`: `geom_segment()`

```r
ggplot(ages, 
       aes(x=actress_age, y=fct_reorder(Movie, actress_age, desc=TRUE))) + 
gew_iem segment( 
      aes(x = 0, 
           xend = actress_age, 
           yend = fct_reorder(Movie, actress_age, desc=TRUE), 
           color = "gray50") + 
geometric_point()
```
Looking interesting, right?

If we wanted to publish this on a website or share on social media, we’ll need to clean up the labels and add a title and add a source line.

That’s easy to do.

```r
ggplot(ages, 
aes(x=actress_age, y=fct_reorder(Movie, actress_age, desc=TRUE))) + geom_segment(
  aes(x = 0, 
y=fct_reorder(Movie, actress_age, desc=TRUE), 
xend = actress_age, 
yend = fct_reorder(Movie, actress_age, desc=TRUE)), 
color = "gray50") + geom_point() +
```
So we added a lot of information to the `labs()` function: x, y, title, subtitle, and caption.

We also added `theme_minimal()` which changed a lot of the style, such as the gray grid background.

What if we wanted to clean it up even more?

It’s such a tall chart, it’s difficult to keep track of the actual age represented by the lollipop.

Let’s get rid of the grids and add the numbers to the right of each dot.
```r
ggplot(ages, 
  aes(x=actress_age, y=fct_reorder(Movie, actress_age, desc=TRUE))) +
geom_segment(
  aes(x = 0,
       y=fct_reorder(Movie, actress_age, desc=TRUE),
       xend = actress_age,
       yend = fct_reorder(Movie, actress_age, desc=TRUE),
       color = "gray50") +
  geom_point() +
  labs(x="Actress age", y="Movie",
       title = "Actress ages in movies",
       subtitle = "for R for Journalists class",
       caption = "Data from Vulture.com and IMDB") +
  theme_minimal() +
  # NEW CODE BELOW
  geom_text(aes(label=actress_age), hjust=-.5) +
  theme(panel.border = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        axis.line = element_blank(),
        axis.text.x = element_blank())
```
So, we added two new \texttt{ggplot2} elements: \texttt{geom_text()} and \texttt{theme()}. We passed the \texttt{actress_age} variable to \texttt{label} and also used \texttt{hjust=} which means horizontally adjust the location. Alternatively, \texttt{vjust} would adjust vertically.

In \texttt{theme()} there are a bunch of things passed, including \texttt{panel.border} and \texttt{axis.text.x} and made them equal \texttt{element_blank()}. Each piece of the chart can be customized and eliminated with \texttt{*element_blank()}. Not bad looking! Let's save it.
Saving ggplots

We’ll use `ggsave()` from the `ggplot2` package.

File types that can be exported:

- `png`
- `tex`
- `pdf`
- `jpeg`
- `tiff`
- `bmp`
- `svg`

You can specify the width of the image in units of “in”, “cm”, “or mm”.

Otherwise it saves based on the size of how it displayed on your screen.

```r
library(ggplot2)

ggsave("actress_ages.png")
```

Saving 6.5 x 4.5 in image

How’s it look?

Ew, okay. Needs some adjustment. I guess we can’t go with the default display for this particular chart.

```r
library(ggplot2)
ggsave("actress_ages_adjusted.png", width=20, height=30, units="cm")
```

Actress ages in movies for R for Journalists class

Data from Vulture.com and IMDB
Actress ages in movies for R for Journalists class

<table>
<thead>
<tr>
<th>Movie</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall We Dance</td>
<td>58</td>
</tr>
<tr>
<td>Captain Phillips</td>
<td>54</td>
</tr>
<tr>
<td>Extremely Loud & Incredibly Close</td>
<td>47</td>
</tr>
<tr>
<td>Cloud Atlas</td>
<td>46</td>
</tr>
<tr>
<td>Firewall</td>
<td>43</td>
</tr>
<tr>
<td>Nights in Rodanthe</td>
<td>42</td>
</tr>
<tr>
<td>What Lies Beneath</td>
<td>42</td>
</tr>
<tr>
<td>O Brother, Where Art Thou?</td>
<td>41</td>
</tr>
<tr>
<td>Charlie Wilson's War</td>
<td>41</td>
</tr>
<tr>
<td>Bee Season</td>
<td>40</td>
</tr>
<tr>
<td>Apollo 13</td>
<td>39</td>
</tr>
<tr>
<td>Random Hearts</td>
<td>38</td>
</tr>
<tr>
<td>One Fine Day</td>
<td>38</td>
</tr>
<tr>
<td>Leatherheads</td>
<td>38</td>
</tr>
<tr>
<td>The Good German</td>
<td>37</td>
</tr>
<tr>
<td>Knight and Day</td>
<td>37</td>
</tr>
<tr>
<td>Cast Away</td>
<td>37</td>
</tr>
<tr>
<td>Up in the Air</td>
<td>36</td>
</tr>
<tr>
<td>The Money Pit</td>
<td>36</td>
</tr>
<tr>
<td>The Hoax</td>
<td>36</td>
</tr>
<tr>
<td>Chocolat</td>
<td>36</td>
</tr>
<tr>
<td>The Tourist</td>
<td>35</td>
</tr>
<tr>
<td>Flight</td>
<td>35</td>
</tr>
<tr>
<td>Amelia</td>
<td>35</td>
</tr>
<tr>
<td>The American</td>
<td>34</td>
</tr>
<tr>
<td>Rock of Ages</td>
<td>34</td>
</tr>
<tr>
<td>Ocean's Eleven</td>
<td>34</td>
</tr>
<tr>
<td>Malcolm X</td>
<td>34</td>
</tr>
<tr>
<td>John Q</td>
<td>34</td>
</tr>
<tr>
<td>Intolerable Cruelty</td>
<td>34</td>
</tr>
<tr>
<td>Arbitrage</td>
<td>34</td>
</tr>
<tr>
<td>The Preacher's Wife</td>
<td>33</td>
</tr>
<tr>
<td>Regarding Henry</td>
<td>33</td>
</tr>
<tr>
<td>Oblivion</td>
<td>33</td>
</tr>
<tr>
<td>Losin It</td>
<td>33</td>
</tr>
<tr>
<td>Batman & Robin</td>
<td>33</td>
</tr>
<tr>
<td>Solars</td>
<td>32</td>
</tr>
<tr>
<td>Out of Time</td>
<td>32</td>
</tr>
<tr>
<td>Working Girl</td>
<td>31</td>
</tr>
<tr>
<td>Sleepless in Seattle</td>
<td>31</td>
</tr>
<tr>
<td>Transcendence</td>
<td>30</td>
</tr>
<tr>
<td>Sommersby</td>
<td>30</td>
</tr>
<tr>
<td>Sabrina</td>
<td>30</td>
</tr>
<tr>
<td>Mission Impossible III</td>
<td>30</td>
</tr>
<tr>
<td>First Knight</td>
<td>30</td>
</tr>
<tr>
<td>DejaVu</td>
<td>30</td>
</tr>
<tr>
<td>Six Days Seven Nights</td>
<td>29</td>
</tr>
<tr>
<td>Remember the Titans</td>
<td>29</td>
</tr>
<tr>
<td>Raiders of the Lost Ark</td>
<td>29</td>
</tr>
<tr>
<td>American Gangster</td>
<td>29</td>
</tr>
<tr>
<td>Top Gun</td>
<td>28</td>
</tr>
<tr>
<td>Out of Sight</td>
<td>28</td>
</tr>
<tr>
<td>Mo' Better Blues</td>
<td>28</td>
</tr>
<tr>
<td>Jerry Maguire</td>
<td>28</td>
</tr>
<tr>
<td>Forrest Gump</td>
<td>28</td>
</tr>
<tr>
<td>Autumn in New York</td>
<td>28</td>
</tr>
<tr>
<td>Witness</td>
<td>27</td>
</tr>
<tr>
<td>Vanilla Sky</td>
<td>27</td>
</tr>
<tr>
<td>Training Day</td>
<td>27</td>
</tr>
<tr>
<td>An Officer and a Gentleman</td>
<td>27</td>
</tr>
<tr>
<td>Blow</td>
<td>26</td>
</tr>
<tr>
<td>The Rum Diary</td>
<td>25</td>
</tr>
<tr>
<td>Far and Away</td>
<td>24</td>
</tr>
<tr>
<td>Dark Shadows</td>
<td>24</td>
</tr>
<tr>
<td>Splash</td>
<td>23</td>
</tr>
<tr>
<td>Risky Business</td>
<td>23</td>
</tr>
<tr>
<td>Empire Strikes Back</td>
<td>23</td>
</tr>
<tr>
<td>Pretty Woman</td>
<td>22</td>
</tr>
<tr>
<td>He Got Game</td>
<td>22</td>
</tr>
<tr>
<td>Blade Runner</td>
<td>22</td>
</tr>
<tr>
<td>Pirates of the Caribbean</td>
<td>21</td>
</tr>
<tr>
<td>What's Eating Gilbert Grape</td>
<td>20</td>
</tr>
<tr>
<td>Sleepy Hollow</td>
<td>19</td>
</tr>
<tr>
<td>Edward Scissorhands</td>
<td>19</td>
</tr>
</tbody>
</table>
Much better!

You could then save it as a .svg file and tweak it even further in Adobe Illustrator or Inkscape.

Alright, I’m going to tweak it some more by adding actor ages. We just need to adjust the `geom_segment()` and another `geom_point()` layer so it uses the `actor_age` variable.

First, let’s permanently reorder the data frame so we don’t have to keep using `fct_reorder`

```r
library(dplyr)

ages_reordered <- ages %>%
  mutate(Movie = fct_reorder(Movie, desc(actor_age)))

ggplot(ages_reordered) +
  geom_segment(
    aes(x = actress_age,
        y = Movie,
        xend = actor_age,
        yend = Movie),
    color = "gray50") +
  geom_point(aes(x = actress_age, y = Movie), color = "dark green") +
  geom_point(aes(x = actor_age, y = Movie), color = "dark blue") +
  labs(x = "", y = "",
       title = "Actor and actress ages in movies",
       subtitle = "for R for Journalists class",
       caption = "Data from Vulture.com and IMDB") +
  theme_minimal() +
  geom_text(aes(x = actress_age, y = Movie, label = actress_age),
            hjust = ifelse(ages$actress_age < ages$actor_age, 1.5, -0.5)) +
  geom_text(aes(x = actor_age, y = Movie, label = actor_age),
            hjust = ifelse(ages$actress_age < ages$actor_age, -0.5, 1.5)) +
  theme(panel.border = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        axis.line = element_blank(),
        axis.text.x = element_blank())
```
This time I left the x and y axis labels blank because it seemed redundant.

Scales

Let’s talk about scales.

Axes
• scale_x_continuous()
• scale_y_continuous()
• scale_x_discrete()
• scale_y_discrete()

Colors
• scale_color_continuous()
• scale_color_manual()
• scale_color_brewer()

Fill
• scale_fill_continuous()
• scale_fill_manual()

```r
ggplot(ages, aes(x=actor_age, y=actress_age)) + geom_point() +
  scale_x_continuous(breaks=seq(20,30,2), limits=c(20,30)) +
  scale_y_continuous(breaks=seq(20,40,4), limits=c(20,40))
```

Warning: Removed 67 rows containing missing values (geom_point).

By setting `breaks` in `scale_x_continuous()`, we limited the breaks where the chart was divided on the x axis in intervals of 2. And we limited the x axis with `limit` between 20 and 30. All other data points were dropped.

By setting `breaks` in `scale_y_continuous()`, we limited the breaks where the chart was divided on the x axis in intervals of 4. And we limited the x axis with `limit` between 20 and 40. All other data points were dropped.

That was limiting the scale by continuous data.
Here’s how to set limits on discrete data.

```r
ggplot(ages, aes(x=actor)) + geom_bar() + scale_x_discrete(limits=c("Tom Hanks", "Tom Cruise", "Denzel Washington"))
```

Warning: Removed 43 rows containing non-finite values (stat_count).

Scales for color and fill

It’s possible to manually change the colors of your chart.

You can use hex symbols or the name of a color if it’s recognized.

We’ll use `scale_fill_manual()`.

```r
library(dplyr)

avg_age <- ages %>%
  group_by(actor) %>%
  mutate(age_diff = actor_age-actress_age) %>%
  summarize(average_age_diff = mean(age_diff))

ggplot(avg_age, aes(x=actor, y=average_age_diff, fill=actor)) +
  geom_bar(stat="identity") +
  theme(legend.position="none") + # This removes the legend
  scale_fill_manual(values=c("aquamarine", "darkorchid", "deepskyblue2", "lemonchiffon2",
  "orange", "peachpuff3", "tomato"))
```
You can also specify a color palette using `scale_fill_brewer()` or `scale_color_brewer()`

```r
ggplot(avg_age, aes(x=actor, y=average_age_diff, fill=actor)) + geom_bar(stat="identity") + theme(legend.position="none") + scale_fill_brewer()
```

Check out some of the other palette options that can be passed to brewer.

```r
ggplot(avg_age, aes(x=actor, y=average_age_diff, fill=actor)) + geom_bar(stat="identity") + theme(legend.position="none") +
```

15
Did you know that someone made a Wes Anderson color palette package based on his different movies?

Annotations

You can annotate charts with `annotate()` and `geom_hline()` or `geom_vline()`.

```r
ggplot(ages, aes(x=actor_age, y=actress_age)) +
  geom_point() +
  geom_hline(yintercept=50, color="red") +
  annotate("text", x=40, y=51, label="Random text for some reason", color="red")
```
Themes

You’ve seen an example of a theme used in a previous chart. `theme_bw()`.

But there are many more that have been created and collected into the `ggthemes` library.

Here’s one for the economist

```r
# If you don't have ggthemes installed yet, uncomment the line below and run it
# install.packages("ggthemes")

library(ggthemes)

ggplot(ages, aes(x = actor_age, y = actress_age, color = actor)) +
  geom_point() +
  theme_economist() +
  scale_colour_economist()
```
Here’s one based on FiveThirtyEight’s style (though it’s not the official one).

```r
ggplot(ages, aes(x=actor_age, y=actress_age, color=actor)) + geom_point() + theme_fivethirtyeight()
```
Check out all the other ones currently available.

It’s not difficult to make your own. It’s just time consuming.

It involves tweaking every little detail, like text, and colors, and how the grids should look.

Check out the theme that the Associated Press uses. They posted it on their repo and by loading their own package, they can just add `theme_ap()` at the end of their charts to transform it to AP style.

Your turn

Challenge yourself with these exercises so you’ll retain the knowledge of this section.

Instructions on how to run the exercise app are on the intro page to this section.